Theory
Information
This page provides a brief overview of the equations, data, and theory used to correct the equilibrium constants. For a more rigorous description of the theory and assumptions involved in adjusting equilibrium constants, please consult the references.
For a step-by-step walkthrough of the adjustment calculations over the CK clamp, please consult this Jupyter notebook. This document contains descriptions of the process alongside Python code that implements the calculations.
Chemical Equations
The Chemical Equations for the hydrolysis of ATP, the Creatine Kinase reaction, and the Adenylate Kinase reaction are listed below
$$ K_{\text{ref ATP}} = \frac {[\text{ADP}^{3-}][\text{HPO}_4^{2-}][\text{H}^{+}]} {[\text{ATP}^{4-}][\text{H}_2\text{O}]} $$ $$ K_{\text{ref CK}} = \frac {[\text{ATP}^{4-}][\text{Cr}]} {[\text{ADP}^{3-}][\text{PCr}^{2-}][\text{H}^{+}]} $$ $$ K_{\text{ref AK}} = \frac {[\text{ATP}^{4-}][\text{AMP}^{2-}]} {[\text{ADP}^{3-}]^2} $$Apparent Equilibrium Constants
The apparent equilibrium constant (K`) for the above chemical equations is related to the Reference Equilibrium Constant (Kref, which is measured under specific experimental conditions) through the following relationship:
$$ K^\prime_{ATP} = \frac {K_{\text{ref ATP}}}{[\text{H}{^+}]} \frac{ \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ADP}}}} + K_{\text{b}_{\text{MgADP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHADP}}} [\text{H}{^+}][\text{Mg}^{2+}]} {K_{\text{a}_{\text{ADP}}}} \right\} \left\{ 1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{HPO}{_4}}}} + K_{\text{b}_{\text{MgHPO}{_4}}}[\text{Mg}^{2+}] \right\} } { \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ATP}}}} + K_{\text{b}_{\text{MgATP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHATP}}} [\text{H}{^+}][\text{Mg}^{2+}]} {K_{\text{a}_{\text{ATP}}}} \right\} }$$ $$ K^\prime_{CK} = K_{\text{ref CK}} \frac { [\text{H}{^+}]\left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ATP}}}} + K_{\text{b}_{\text{MgATP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHATP}}} [\text{H}{^+}] [\text{Mg}^{2+}]} {K_{\text{a}_{\text{ATP}}}} \right\} } { \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ADP}}}} + K_{\text{b}_{\text{MgADP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHADP}}} [\text{H}{^+}] [\text{Mg}^{2+}]} {K_{\text{a}_{\text{ADP}}}} \right\} \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{PCr}}}} + K_{\text{b}_{\text{MgPCr}}}[\text{Mg}^{2+}] \right\} }$$ $$ K^\prime_{ATP} = \frac {K_{\text{ref ATP}}}{[\text{H}{^+}]} \frac{ \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ADP}}}} + K_{\text{b}_{\text{MgADP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHADP}}} [\text{H}{^+}][\text{Mg}^{2+}]} {K_{\text{a}_{\text{ADP}}}} \right\} \left\{ 1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{HPO}{_4}}}} + K_{\text{b}_{\text{MgHPO}{_4}}}[\text{Mg}^{2+}] \right\} } { \left\{1 + \frac {[\text{H}{^+}]} {K_{\text{a}_{\text{ATP}}}} + K_{\text{b}_{\text{MgATP}}}[\text{Mg}^{2+}] + \frac {K_{\text{b}_{\text{MgHATP}}} [\text{H}{^+}][\text{Mg}^{2+}]} {K_{\text{a}_{\text{ATP}}}} \right\} }$$Each expression contained within {} represents one of the ions within the Kref expressed as a function of its its acid dissociation and magnesium binding properties. These are also equilibrium constants and must be adjusted for ionic strenght, pH, free magnesium, and temperature of the system. These variables along with their corresponding values are summarized in the table below
Vant Hoff Equation
$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H ^\circ}{R}\left( \frac{1}{T_2} - \frac{1}{T_1} \right)$$
- \(R = 8.3144598 \frac{J}{K mol}\)
- \(K_1 = K_{ref_{I=0}}\)
- \(T_1 = \) Temperature of \(K_1\)
- \(K_2 = K_{ref_{I=0}}\) at new temperature \(T_2\)
- \(\Delta H^\circ = \) Change in Enthalpy at Ionic Strength 0
Debye–Hückel
$$A_m = 3 \left(-16.390 23 + \frac{261.337 1}{T} + 3.368 9633\ln T - 1.437 167\left(\frac{T}{100}\right) + 0.111 995 \left(\frac{T}{100}\right)^2 \right)$$
$$\ln γ = \frac{-A_m \sqrt{I} z^2}{1 + B \sqrt{I}}$$
- \(I= \text{ionic strength} (\frac{mol}{L})\)
- \(B = 1.6 \frac{kg^{1/2}}{mol^{1/2}}\)
- \(z = \text{charge}\)
$$\Gamma = \frac{\prod \gamma_{\text{products}_{I=\text{finite}}}} {\prod \gamma_{\text{reactants}_{I=\text{finite}}}}$$
$$K_{\text{ref}_{I=O\text{, }T=\text{finite}}} = \Gamma K_{\text{ref}_{I=\text{finite, }T=\text{finite}}}$$
Constants for ATP Hydrolysis, Creatine Kinase, and Adenylate Kinase
Symbol | Reaction | Equilibrium Constant | $$K_{\text{ref}}$$ | $$\Delta H{^\circ} (kJ mol^{-1})$$ |
---|---|---|---|---|
$$K_{\text{a}_{\text{ATP}}}$$ | $$\text{HATP}^{3-} \leftrightarrow H{^+} + \text{ATP}^{4-}$$ | $$\frac{[H{^+}][\text{ATP}^{4-}]}{[\text{HATP}^{3-}]}$$ | 2.512×10-8 | -6.30 |
$$K_{\text{b}_{\text{MgATP}}}$$ | $$\text{Mg}^{2+} + \text{ATP}^{4-} \leftrightarrow \text{MgATP}^{2-}$$ | $$\frac{[\text{MgATP}^{2-}]}{[\text{Mg}^{2+}][\text{ATP}^{4-}]}$$ | 1.514×106 | 22.90 |
$$K_{\text{b}_{\text{MgHATP}}}$$ | $$\text{Mg}^{2+} + \text{HATP}^{3-} \leftrightarrow \text{MgHATP}^{1-}$$ | $$\frac{[\text{MgHATP}^{1-}]}{[\text{Mg}^{2+}][\text{HATP}^{3-}]}$$ | 4.266×103 | 16.90 |
$$K_{\text{a}_{\text{ADP}}}$$ | $$\text{HADP}^{2-} \leftrightarrow H{^+} + \text{ADP}^{3-}$$ | $$\frac{[H{^+}][\text{ADP}^{3-}]}{[\text{HADP}^{2-}]}$$ | 6.607×10-8 | -5.60 |
$$K_{\text{b}_{\text{MgADP}}}$$ | $$\text{Mg}^{2+} + \text{ADP}^{3-} \leftrightarrow \text{MgADP}^{1-}$$ | $$\frac{[\text{MgADP}^{1-}]}{[\text{Mg}^{2+}][\text{ADP}^{3-}]}$$ | 4.466×104 | 19.0 |
$$K_{\text{b}_{\text{MgHADP}}}$$ | $$\text{Mg}^{2+} + \text{HADP}^{2-} \leftrightarrow \text{MgHADP}$$ | $$\frac{[\text{MgHADP}]}{[\text{Mg}^{2+}][\text{HADP}^{2-}]}$$ | 3.163×102 | 12.50 |
$$K_{\text{a}_{\text{AMP}}}$$ | $$\text{HAMP}^{1-} \leftrightarrow H{^+} + \text{AMP}^{2-}$$ | $$\frac{[H{^+}][\text{AMP}^{2-}]}{[\text{HAMP}^{1-}]}$$ | 1.862×10-7 | -5.40 |
$$K_{\text{b}_{\text{MgAMP}}}$$ | $$\text{Mg}^{2+} + \text{AMP}^{2-} \leftrightarrow \text{MgAMP}$$ | $$\frac{[\text{MgAMP}^{1-}]}{[\text{Mg}^{2+}][\text{AMP}^{2-}]}$$ | 6.165×102 | 11.30 |
$$K_{\text{a}_{\text{HPO}{_4}}}$$ | $$\text{H}{_2}\text{PO}{_4}^{1-} \leftrightarrow \text{H}{^+} + \text{HPO}{_4}^{2-}$$ | $$\frac {[\text{HPO}{_4}^{2-}][\text{H}^{+}]}{[\text{H}{_2}\text{PO}{_4}^{1-}]}$$ | 6.026×10-8 | 3.60 |
$$K_{\text{b}_{\text{MgHPO}{_4}}}$$ | $$\text{Mg}^{2+} + \text{HPO}{_4}^{2-} \leftrightarrow \text{MgHPO}{_4}$$ | $$\frac{[\text{MgHPO}{_4}]}{[\text{Mg}^{2+}][\text{HPO}{_4}^{2-}]}$$ | 5.128×108 | 12.20 |
$$K_{\text{a}_{\text{PCr}}}$$ | $$\text{HPCr}^{1-} \leftrightarrow \text{H}{^+} + \text{PCr}^{2-}$$ | $$\frac{[\text{H}{^+}][\text{PCr}^{2-}]}{[\text{HPCr}^{1-}]}$$ | 8.854×10-6 | 2.66 |
$$K_{\text{b}_{\text{MgPCr}}}$$ | $$\text{Mg}^{2+} + \text{PCr}^{2-} \leftrightarrow \text{MgPCr}$$ | $$\frac{[\text{MgPCr}]}{[\text{Mg}^{2+}][\text{PCr}^{2-}]}$$ | 2.320×102 | 8.19 |
$$K_{\text{eq}_{\text{Creatine Kinase}}}$$ | $$\text{PCr}^{2-} + \text{ADP}^{3-} + \text{H}^+ \leftrightarrow \text{ATP}^{4-} + \text{Cr} $$ | $$\frac{[\text{ATP}^{4-}][\text{Cr}]}{[\text{PCr}^{2-}][\text{ADP}^{3-}][\text{H}^+]}$$ | 2.58×108 | -17.55 |
$$K_{\text{eq}_{\text{ATP Hydrolysis}}}$$ | $$\text{ATP}^{4-} + \text{H}_2\text{O} \leftrightarrow \text{ADP}^{3-} + \text{HPO}{_4}^{2-} + \text{H}^+$$ | $$\frac{[\text{ADP}^{3-}][\text{HPO}{_4}^{2-}][\text{H}^+]}{[\text{ATP}][\text{H}_2\text{O}]}$$ | 2.946×10-1 | -20.50 |
$$K_{\text{eq}_{\text{Adenylate Kinase}}}$$ | $$2\text{ADP}^{3-} \leftrightarrow \text{ATP}^{4-} + \text{AMP}^{2-}$$ | $$\frac{[\text{ATP}^{4-}][\text{AMP}^{2-}]}{[\text{ADP}^{3-}]^2}$$ | 2.248×10-1 | -1.50 |